Site-specific recoil diffraction of backscattered electrons in crystals.
نویسندگان
چکیده
A novel diffraction effect in high-energy electron backscattering is demonstrated: the formation of element-specific diffraction patterns via nuclear recoil. For sapphire (Al(2)O(3)), the difference in recoil energy allows us to determine if an electron scattered from aluminum or from oxygen. The angular electron distribution obtained in such measurements is a strong function of the recoiling lattice site. These element-specific recoil diffraction features are explained using the dynamical theory of electron diffraction. Our observations open up new possibilities for local, element-resolved crystallographic analysis using quasielastically backscattered electrons in scanning electron microscopy.
منابع مشابه
Electron energy loss and diffraction of backscattered electrons from silicon
Electrons backscattered from crystals can show Kikuchi patterns: variations in intensity for different outgoing directions due to diffraction by the lattice. Here, we measure these effects as a function of their energy loss for 30 keV electrons backscattered from silicon. The change in diffraction contrast with energy loss depends strongly on the scattering geometry. At steep incidence on the s...
متن کاملElement-specific Kikuchi patterns of Rutile.
The kinetic energy of keV electrons backscattered from a rutile (TiO2) surface depends measurably on the mass of the scattering atom. This makes it possible to determine separately the angular distribution of electrons backscattered elastically from either Ti or O. Diffraction effects of these backscattered electrons inside the rutile crystal lead to the formation of Kikuchi patterns. The eleme...
متن کاملQuantitative measurements of Kikuchi bands in diffraction patterns of backscattered electrons using an electrostatic analyzer.
Diffraction patterns of backscattered electrons can provide important crystallographic information with high spatial resolution. Recently, the dynamical theory of electron diffraction was applied to reproduce in great detail backscattering patterns observed in the scanning electron microscope (SEM). However, a fully quantitative comparison of theory and experiment requires angle-resolved measur...
متن کاملPrinciples of depth-resolved Kikuchi pattern simulation for electron backscatter diffraction.
This paper presents a tutorial discussion of the principles underlying the depth-dependent Kikuchi pattern formation of backscattered electrons in the scanning electron microscope. To illustrate the connections between various electron diffraction methods, the formation of Kikuchi bands in electron backscatter diffraction in the scanning electron microscope and in transmission electron microsco...
متن کاملWhy STEM Not TEM?
The TEM The TEM has a similar optical configuration to an optical microscope. A flood beam of electrons illuminates a thin sample. The electron transmitted through the sample are projected onto a viewing screen or camera for observation (Figure 1). Samples must be thin (around 100 nm) and the beam energies must be high. Electrons may either pass through the sample without being scattered or may...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 106 8 شماره
صفحات -
تاریخ انتشار 2011